Mahmoud Ghannam

(Q1) Let $L: P_{3} \longrightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
L\left(a x^{2}+b x+c\right)=\binom{a+b}{a-c}
$$

(a) Find a basis and dimension of $\operatorname{ker}(L)$.
(b) Find a basis and the dimension of range (L).
(c) Is L one-to one?
(d) Is L onto?
(e) If $S=\operatorname{span}\left(x^{2}+1\right)$, find the image of S.
(Q2) Let $L: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be a linear transformation defined by $L\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x-y+z \\ 2 x-4 z\end{array}\right]$
(a) Find a basis and dimension of $\operatorname{ker}(L)$.
(b) Find a basis and dimension of range (L).
(Q3) Let $L: \mathbb{R}^{3} \longrightarrow P_{4}$ given by $L\left((a, b, c)^{T}\right)=(a+b) x^{3}+(b+c) x^{2}+(a+c) x$.
(a) Find a basis and dimension of $\operatorname{ker}(L)$.
(b) Find a basis and dimension of range (L).
(Q4) Let $L: P_{3} \longrightarrow P_{3}$ be the linear transformation defined by $L(p(x))=x^{2} p^{\prime \prime}(x)+p^{\prime}(x)+p(0)$
(a) Find a basis and dimension of $\operatorname{ker}(L)$.
(b) Find a basis and dimension of range (L).
(Q5) Let $L: P_{3} \longrightarrow \mathbb{R}^{2 \times 2}$ be a linear transformation defined by $L\left(a x^{2}+b x+c\right)=\left(\begin{array}{lr}a+b & a \\ a-b-c & b+c\end{array}\right)$.
(a) Find a basis and dimension of $\operatorname{ker}(L)$.
(b) Find a basis and dimension of range (L).
(Q6) Let $L: P_{3} \longrightarrow \mathbb{R}^{2}$ be defined by $L(p(x))=\binom{\int_{0}^{1} p(x) d x}{p(0)}$.
(a) Find a basis and dimension of $\operatorname{ker}(L)$.
(b) Find a basis and dimension of range (L).
(Q7) Let $L: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be a linear transformation defined by $L\left((a, b, c)^{T}\right)=(a+b+c, 0)^{T}$.
(a) Find a basis and dimension of $\operatorname{ker}(L)$.
(b) Find a basis and dimension of range (L).
(Q8) Let $L: P_{3} \longrightarrow \mathbb{R}^{2}$ be a linear transformation such that $L(p(x))=\binom{p^{\prime \prime}(x)-p^{\prime}(1)}{p(0)}$.
(a) Find $\operatorname{ker}(L)$ and its dimension.
(b) Find range (L) and its dimension.
(c) Is L one-to-one? Onto? Why?
(d) Let $S=P_{1}$. Find $L(S)$

Short Answers

(Q1)
(a) Basis $=\left\{x^{2}-x+1\right\} \quad \operatorname{dim}(\operatorname{ker}(L))=1$
(b) Basis $=$ Any basis of $\mathbb{R}^{2} \quad \operatorname{dim}(\operatorname{range}(L))=2$
(c) No.
(d) Yes.
(e) $\operatorname{span}\left(e_{1}\right)$
(Q2)
(a) Basis $=\left\{(2,3,1)^{T}\right\} \quad \operatorname{dim}(\operatorname{ker}(L))=1$
(b) Basis $=$ Any basis of $\mathbb{R}^{2} \quad \operatorname{dim}(\operatorname{range}(L))=2$
(Q3)
(a) Basis $=\left\{(0,0,0)^{T}\right\} \quad \operatorname{dim}(\operatorname{ker}(L))=0$
(b) Basis $=\left\{x^{3}+x, x^{3}+x^{2}, x^{2}+x\right\} \quad \operatorname{dim}($ range $(L))=3$
(Q4)
(a) Basis $=\{1-x\} \quad \operatorname{dim}(\operatorname{ker}(L))=1$
(b) Basis $=\left\{x^{2}+x, 1\right\} \quad \operatorname{dim}(\operatorname{range}(L))=2$

(Q5)

(a) Basis $=\{0\} \quad \operatorname{dim}(\operatorname{ker}(L))=0$
(b) Basis $=\left\{\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right),\left(\begin{array}{cc}0 & 0 \\ -1 & 1\end{array}\right)\right\} \quad \operatorname{dim}(\operatorname{range}(L))=3$
(Q6)
(a) Basis $=\left\{2 x-3 x^{2}\right\} \quad \operatorname{dim}(\operatorname{ker}(L))=1$
(b) Basis $=$ Any basis of $\mathbb{R}^{2} \quad \operatorname{dim}(\operatorname{range}(L))=2$
(Q7)
(a) Basis $=\left\{(1,0,-1)^{T},(0,1,-1)^{T}\right\} \quad \operatorname{dim}(\operatorname{ker}(L))=2$
(b) Basis $=\left\{e_{1}\right\} \quad \operatorname{dim}(\operatorname{range}(L))=1$

(Q8)

(a) Basis $=\left\{x^{2}\right\} \quad \operatorname{dim}(\operatorname{ker}(L))=1$
(b) Basis $=$ Any basis of $\mathbb{R}^{2} \quad \operatorname{dim}(\operatorname{range}(L))=2$
(c) Onto but not one-to-one.
(d) $\operatorname{span}\left(e_{2}\right)$

